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Abstract- In this paper, a genetic algorithm (GA) and
constriction factor based particle swarm optimization technique
are proposed for solving the short term fixed head
hydrothermal scheduling problem with transmission line losses.
The performance efficiency of the proposed techniques is
demonstrated on hydrothermal test system comprising of three
thermal units and one hydro power plant. A wide range of
thermal and hydraulic constraints such as real power balance
constraint, minimum and maximum limits of thermal and hydro
units, water availability limit and discharge rate limits are taken
into account. The simulation results obtained from the
constriction factor based particle swarm optimization technique
are compared with the outcomes obtained from the genetic
algorithm to reveal the validity and verify the feasibility of the
proposed methods. The test results show that the constriction
factor based particle swarm optimization approach give the
same solution as obtained by genetic algorithm but the
computation time of the constriction factor based particle
swarm optimization method is less than genetic algorithm.

Index Terms- Hydrothermal Generation Scheduling, Genetic
Algorithm (GA), Particle Swarm Optimization (PSO),
Constriction Factor (CF)

. INTRODUCTION

HE hydrothermal generation scheduling plays an important

role in the operation and planning of a power system. Since

the operating cost of thermal power plant is very high
compared to the operating cost of hydro power plant, the
integrated operation of the hydro and thermal plants in the
same grid has become the more economical [1]. The main
objective of the short term hydro thermal scheduling problem is
to determine the optimal generation schedule of the thermal
and hydro units to minimize the total production cost over the
scheduling time horizon (typically one day or one week)
subjected to a variety of thermal and hydraulic constraints. The
hydrothermal generation scheduling is mainly concerned with
both hydro unit scheduling and thermal unit dispatching. The
hydrothermal generation scheduling problem is more difficult
than the scheduling of thermal power systems. Since there is no
fuel cost associated with the hydro power generation, the
problem of minimizing the total production cost of
hydrothermal scheduling problem is achieved by minimizing
the fuel cost of thermal power plants under the constraints of
water available for the hydro power generation in a given

period of time [2]. In short term hydrothermal scheduling
problem, the generating unit limits and the load demand over
the scheduling interval are known. Several mathematical
optimization techniques have been used to solve short term
hydrothermal scheduling problems [3]. In the past,
hydrothermal scheduling problem is solved using classical
mathematical optimization methods such as dynamic
programming method [4-5], lagrangian relaxation method [6-7],
mixed integer programming [8], interior point method [9],
gradient search method and Newton raphson method [2]. In
these conventional methods simplifying assumptions are made
in order to make the optimization problem more tractable. Thus,
most of conventional optimization techniques are unable to
produce optimal or near optimal solution of this kind of
problems. The computational time of these methods increases
with the increase of the dimensionality of the problem. The
most common optimization techniques based upon artificial
intelligence concepts such as evolutionary programming [10-
11], simulated annealing [12-14], differential evolution [15],
artificial neural network [16-18], genetic algorithm [19 -22]
and particle swarm optimization [23-27] have been given
attention by many researchers due to their ability to find an
almost global or near global optimal solution for short term
hydrothermal scheduling problems with operating constraints.
Major problem associated with these techniques is that
appropriate control parameters are required. Sometimes these
techniques take large computational time due to improper
selection of the control parameters.

The PSO is a population based optimization technique first
proposed by Kennedy and Eberhart in 1995. In PSO, each
particle is a candidate solution to the problem. Each particle in
PSO makes its decision based on its own experience together
with other particles experiences. Particles approach to the
optimum solution through its present velocity, previous
experience and the best experience of its neighbors [28].
Compared to other evolutionary computation techniques, PSO
can solve the problems quickly with high quality solution and
stable convergence characteristic, whereas it is easily
implemented.

The genetic algorithm (GA) is a stochastic global search and
optimization method that mimics the metaphor of natural
biological evolution such as selection, crossover and mutation.
GA is started with a set of candidate solutions called population
(represented by chromosomes). At each generation, pairs of
chromosomes of the current population are selected to mate
with each other to produce the children for the next generation.
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The chromosomes which are selected to form the new offspring
are selected according to their fitness. In general, the
chromosomes with higher fitness values have higher
probability to reproduce and survive to the next generation.
While the chromosomes with lower fitness values tend to be
discarded. This process is repeated until a termination
condition is reached (for example maximum number of
generations). Most of the GA parameters are set after
considerable experimentation and the major drawback of this
method is the lack of a solid theoretical basis for their setting.

Il. PROBLEM FORMULATION

The main objective of short term hydro thermal
scheduling problem is to minimize the total fuel cost of thermal
power plants over the optimization period while satisfying all
thermal and hydraulic constraints. The objective function to be
minimized can be represented as follows:

T N
FT =ZZntFit(Pgit) (1)

t=1i=1

In general, the fuel cost function of thermal generating unit i
at time interval t can be expressed as a quadratic function of
real power generation as follows:

Fit(Pgit)=aiP 2git+biPgit-+ci )

Where Pg; is the real output power of thermal generating
unit i at time interval t in (MW), Fit (Pgit) is the operating fuel
cost of thermal unit i in ($/hr), FT is the total fuel cost of the
system in ($), T is the total number of time intervals for the
scheduling horizon, nt is the numbers of hours in scheduling
time interval t, N is the total number of thermal generating
units, a,bi and ci are the fuel cost coefficients of thermal

generating unit i.

The minimization of the objective function of short term
hydrothermal scheduling problem is subject to a number of
thermal and hydraulic constraints. These constraints include the
following:

1) Real Power Balance Constraint:

For power balance, an equality constraint should be satisfied.

The total active power generation from the hydro and thermal
plants must equal to the total load demand plus transmission
line losses at each time interval over the scheduling period.

N M
ZPgit+Z Phjt=PDt+PLt (3)
i=1 J=l

Where, Py, is the total load demand during the time interval t
in (MW), Py is the power generation of hydro unit j at time
interval t in (MW), Py is the power generation of thermal
generating unit i at time interval t in (MW) and Py, represents
the total transmission line losses during the time interval t in
(MW).

The total transmission line loss is assumed as a quadratic
function of output powers of the generator units [29] that can
be approximated in the form:

N+M N+M
PLk= Z Z PitBijPjt 4)

i=1  j=1

Where Bij is the transmission loss coefficient matrix, P; and
P;j. are the power generation of hydro or thermal plants and M is
the number of hydro power plants.

2) Thermal Generator Limit Constraint:

The output power generation of thermal power plant must lie
in between its minimum and maximum limits. The inequality
constraint for each thermal generator can be expressed as:

Pgi™ < Pgit < Pgi™ (5)

Where Pg™" and P;™* are the minimum and maximum
power outputs of thermal unit i in (MW), respectively. The
maximum output power of thermal generator i is limited by
thermal consideration and minimum power generation is
limited by the flame instability of a boiler.

3) Hydro Generator Limit Constraint:

The output power generation hydro power plant must lie in
between its minimum and maximum bounds. The inequality
constraint for each hydro generator can be defined as:

Phj™ < Phjt < Phj™ (6)

Where P,™ is the minimum power generation of hydro
generating unit j in (MW) and P,™ is the maximum power
generation of hydro generating unit j in (MW).

4) Water Discharge Rate Limit Constraint:

The water Discharge rate of hydro turbine must lie in
between its minimum and maximum operating limits.

ahj™ < ghjt < ghj™ (7)
Where g™ and g,™ are the minimum and maximum
water discharge rate of reservoir j, respectively

5) Water Availability Limit:

For the scheduling time period, each hydro generating plant
is restricted by the amount of water available in the reservoir as
follows:

T
Z ntghjt=Vhj (8)
t=1

Where gy, is the water discharge rate of hydro unit j during
the time interval t and Vy; is the volume of water stored in
hydro reservoir j.

I11. PERFORMANCE MODEL OF HYDRO POWER PLANT

The output power of each hydro electric power plant varies
with the effective head of reservoir and the water discharge rate
through the turbines. According to Glimn Kirchmayer model,
the water discharge rate is a function of output power
generation and the net hydraulic head and can be represented as
follows:

ghit=ky(hj)(Pnjt) 9

Where gy is the water discharge rate of the reservoir j,
k is the constant of proportionality; h; is the effective head of
reservoir j and Py is the output power of hydro generating unit
j at time interval t.

Where y and ¢ are quadratic functions and are given by:

w(hj)=chi® +Bhi+y (10)

@(Phit) = xPhjt® + yPhjt + z (12)
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Where x, y and z are the water discharge coefficients

o, Band y are positive coefficients.

For large reservoir capacity the effective head is assumed to
be constant over the optimization period. Thus, for fixed head
reservoir, the output power of each hydro unit is function only
of water discharge rate. Thus the function w(hj) is constant

and hence, equation (9) can be rewritten as:

ghit=K1p(Pnjt) (12)

The characteristic equation of the water discharge rate of the

j™ hydro generating unit at time interval t can be represented by
the quadratic equation as follows:

ghjt = XjPZhjt + YiPhjt + Zj (13)
Where: x;, y; and z; are the water discharge coefficients of
hydro unit j.

IV.OVERVIEW OF GENETIC ALGORITHM (GA)

The GA is a method for solving optimization problems that
is based on natural selection, the process that drives biological
evolution. The general scheme of GA is initialized with a
population of candidate solutions (called chromosomes). Each
chromosome is evaluated and given a value which corresponds
to a fitness level in problem domain. At each generation, the
GA selects chromosomes from the current population based on
their fitness level to produce offspring. The chromosomes with
higher fitness levels have higher probability to become parents
for the next generation, while the chromosomes with lower
fitness levels to be discarded. After the selection process, the
crossover operator is applied to parent chromosomes to
produce new offspring chromosomes that inherent information
from both sides of parents by combining partial sets of genes
from them. The chromosomes or children resulting from the
crossover operator will now be subjected to the mutation
operator in final step to form the new generation. Over
successive generations, the population evolves toward an
optimal solution. A schematic outline of simple genetic
algorithm is illustrated in figure 1.

Generate initial Evaluation Is specification Best

population or criteria met? | Yeg individual

T ]

Start Solution found

Selection
Generate
new

Population | crossover

Mutation

Fig.1. Schematic outline of simple genetic algorithm

The features of GA are different from other traditional
methods of optimization in the following respects [30]:
e GA does not require derivative information or other
auxiliary knowledge.
e GA work with a coding of parameters instead of the
parameters themselves. For simplicity, binary coded is
used in this paper.

e GA search from a population of points in parallel, not
a single point.

e  GA use probabilistic transition rules, not deterministic
rules.

A. Genetic Algorithm Operators

At each generation, GA uses three operators to create the
new population from the previous population:

1) Selection or Reproduction

Selection operator is usually the first operator applied on the
population. The chromosomes are selected based on the
Darwin's evolution theory of survival of the fittest. The
chromosomes are selected from the population to produce
offspring based on their fitness values. The chromosomes with
higher fitness values are more likely to contributing offspring
and are simply copied on into the next population. The
commonly used reproduction operator is the proportionate
reproduction operator. The i string in the population is
selected with a probability proportional to F where, r is the
fitness value for that string. The probability of selecting the i"
string is:

Fi

n
2 F
=1

Where n is the population size, the commonly used selection
operator is the roulette-wheel selection method. Since the
circumference of the wheel is marked according to the string
fitness, the roulette-wheel mechanism is expected to make
FilFavg copies of the i" string in the mating pool. The average
fitness of the population is:

i=1

Pi=

(14)

Favg= (15)

2) Crossover or Recombination

The basic operator for producing new chromosomes in the
GA is that of crossover. The crossover produce new
chromosomes have some parts of both parent chromosomes.
The simplest form of crossover is that of single point crossover.
In single point crossover, two chromosomes strings are selected
randomly from the mating pool. Next, the crossover site is
selected randomly along the string length and the binary digits
are swapped between the two strings at crossover site.

3) Mutation

The mutation is the last operator in GA. It prevents the
premature stopping of the algorithm in a local solution. The
mutation operator enhances the ability of the genetic algorithm
to find a near optimal solution to a given problem by
maintaining a sufficient level of genetic variety in the
population. This operator randomly flips or alters one or more
bits at randomly selected locations in a chromosome from 0 to
1 or vice versa.

4) Parameters of Genetic Algorithm (GA)

The performance of GA depends on choice of GA
parameters such as:

i. Population size (Np): The population size affects the
efficiency and performance of the algorithm. Higher population
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size increases its diversity and reduces the chances of
premature converge to a local optimum, but the time for the
population to converge to the optimal regions in the search
space will also increase. On the other hand, small population
size may result in a poor performance from the algorithm. This
is due to the process not covering the entire problem space. A
good population size is about 20-30, however sometimes sizes
50-100 are reported as best.

ii. Crossover rate: The crossover rate is the parameter that
affect the rate at which the process of cross over is applied.
This rate generally should be high, about 80-95%.

iii. Mutation rate: It is a secondary search operator which
increases the diversity of the population. Low mutation rate
helps to prevent any bit position from getting trapped at a
single value, whereas high mutation rate can result in
essentially random search. This rate should be very low.

5) Termination of the GA

The generational process is repeated until a termination
condition has been satisfied. The common terminating
conditions are:

e The algorithm reaches the specified number of
generations.

e The algorithm runs for a specified amount of time.

e The best fitness value in the current population is less
than or equal to the specified value.

e The best solution is not changed after a set number of
generations.

e The algorithm runs for a specified amount of time
with no improvement in the fitness function.

V. GA APPLIED TO SHORT TERM HYDROTHERMAL
SCHEDULING

In genetic algorithm, the water discharge through the
turbines during each optimization interval is used as the main
control variable. In binary genetic algorithm representation, the
water discharge rates for each reservoir at each time interval
are represented by a given number of binary strings. In GA
binary representation, the water discharge rate is used rather
than the output power generation of hydro units because the
encoded parameter is more beneficial for dealing with water
balance constraints. The binary representation of hydro thermal
coordination problem is illustrated in figure 2.

Time mterval | Time inferval 2 Time mterval T
[ o0 | { oor | {owon | | [ ] Proor ] Foon ] = [ o | oo | [ ot |
Qu [ (i Qut ( (o Qut ( (im

Fig.2. Binary representation of hydro thermal scheduling problem

The generated string can be converted in the feasible range
by using the following equation:
min . Ghi™ g™
L

ghj=0fhj )xdi (16)

Where g™ is the minimum value of discharge rate through
hydro turbine j, g,™ is the maximum value of discharge rate
through hydro turbine j, L is the String length (number of bits

used for encoding water discharge rate of each hydro unit) and
d; is the binary coded value of the string ( decimal value of
string).

By knowing the water discharge rate of each hydro power
plant the output power of hydro power plant can be determined.
The total power generations of all hydro power plants are
subtracted from the total system load demand for each hour.
The remaining load must be satisfied by running thermal units
for each hour. An economic load dispatch problem is achieved
and the fuel cost for each thermal unit over the scheduling
period is calculated.

V1. ALGORITHM FOR SHORT TERM HYDROTHERMAL
SCHEDULING PROBLEM USING GA METHOD

The sequential steps of solving short term hydro thermal
scheduling problem by using genetic algorithm are explained as
follows:

Step 1: Read the system input data, namely fuel cost curve
coefficients, power generation limits of hydro and thermal units,
number of thermal units, number of hydro units, power
demands, water discharge rate coefficients, amount of water
available in hydro reservoir, transmission loss coefficients
matrix, water discharge rate limits.

Step 2: Select genetic algorithm parameters such as
population size, length of string, probability of crossover,
probability of mutation and maximum number of generations to
be performed.

Step 3: Generate the initial population randomly in the
binary form. The initial population must be feasible candidate
solutions that satisfy the practical operation constraints of all
thermal and hydro units.

Step 4: Calculate the discharge rate of each hydro unit from
the decoded population by using equation (16).

Step 5: Check the inequality constraint of the water
discharge rate for each hydro unit from the following equation:

ghit  if gnj™ <gnjt <gn ™
ghit =<gni ™" if ghjt <gnj™ 17)
ghj ™ if gnjt >qgn™

Step 6: Calculate the hydro power generation of each hydro
unit.

Step 7: Check the inequality constraint of hydro power
generation according to the following equation:

Phit  if Phj™ < Phjt < Pnj ™
Phjt =< Pnj™" if Phjt < Pnj™
Pnj ™ if Phjt > Pnj ™

(18)

Step 8: Calculate the thermal demand by subtracting the
generation of hydro units from the total load demand. The
thermal demand (total load — hydro generation) must be
covered by the thermal units. The thermal generations are
calculated from the power balance equation given in (4).

Step 9: Calculate the output power of each thermal unit by
solving economic load dispatch problem.

Step 10: Check the inequality constraint of thermal power
generation for each thermal unit according to the following
equation:
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Pyit if Pgi min < Pgit < Pyi max
Pgit =< Pgi min - jf Pgit < Pgi ™
Pgi ™™ if Pgit > Pgi ™

(19)

Step 11: Evaluate the fitness value for each string in the
population by using the objective function stated in equation
Q).

Step 12: The chromosomes with lower cost function are
selected to become parents for the next generation.

Step 13: Perform the crossover operator
chromosomes to create new offspring chromosomes.

Step 14: The mutation operator is applied to the new
offspring resulting from the crossover operation to form the
new generation.

Step 15: Update the population.

Step 16: If the number of iterations reached the maximum,
then go to step17. Otherwise go to step 4.

Stepl7: The string that generates the minimum total fuel cost
of the thermal power plants is the optimal solution of the
problem.

Step 18: Print the outputs of hydrothermal scheduling and
stop.

to parent

VII. CONSTRICTION FACTOR BASED PARTICLE SWARM

OPTIMIZATION TECHNIQUE

A. Overview of Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based
stochastic optimization technique, inspired by social behavior
of bird flocking or fish schooling. It is one of the most modern
heuristic algorithms, which can be used to solve non linear and
non continuous optimization problems. PSO shares many
similarities with evolutionary computation techniques such as
genetic algorithm (GA). The system is initialized with a
population of random solutions and searches for optima by
updating generations. However, unlike GA, PSO has no
evolution operators such as mutation and crossover. The PSO

algorithm searches in parallel using a group of random particles.

Each particle in a swarm corresponds to a candidate solution to
the problem. Particles in a swarm approach to the optimum
solution through its present velocity, its previous experience
and the experience of its neighbors. In every generation, each
particle in a swarm is updated by two best values. The first one
is the best solution (best fitness) it has achieved so far. This
value is called Pbest. Another best value that is tracked by the
particle swarm optimizer is the best value, obtained so far by
any particle in the population. This best value is a global best
and called gbest. Each particle moves its position in the search
space and updates its velocity according to its own flying
experience and neighbor's flying experience. After finding the
two best values, the particle update its velocity according to
equation (20).
Vi =xVik +c1xrix(Pbestik - Xi*)+caxrax(ghest* - Xi¥) (20)
Where Vis the velocity of particle i at iteration k, Xis the
position of particle i at iteration k, o is the inertia weight factor,
c;and c, are the acceleration coefficients, r;and r, are positive
random numbers between 0 and 1, Pbest is the best position of
particle i at iteration k and gbest® is the best position of the
group at iteration k.
In the velocity updating process, the acceleration constants
1, C, and the inertia weight factor are predefined and the

random numbers r;and r, are uniformly distributed in the range
of [0,1]. Suitable selection of inertia weight in equation (20)
provides a balance between local and global searches, thus
requiring less iteration on average to find a sufficiently optimal
solution. A low value of inertia weight implies a local search,
while a high value leads to global search. As originally
developed, the inertia weight factor often is decreased linearly
from about 0.9 to 0.4 during a run. It was proposed in [31]. In
general, the inertia weight o is set according to the following
equation;

(21)

Where omin and oma, are the minimum and maximum value
of inertia weight factor, Iter,, corresponds to the maximum
iteration number and lter is the current iteration number.

The current position (searching point in the solution space)
can be modified by using the following equation:

Xiktl=xiK +viktl (22)

The velocity of particle i at iteration k must lie in the range:
Vi min <Vik <Vi max (23)

The parameter V. determines the resolution or fitness, with
which regions are to be searched between the present position
and the target position. If Vmax is too high, the PSO facilitates a
global search and particles may fly past good solutions.
Conversely, if Vi is too small, the PSO facilitates a local
search and particles may not explore sufficiently beyond
locally good solutions. In many experiences with PSO, Vax
was often set at 10-20% of the dynamic range on each
dimension.

The constants ¢; and ¢, in equation (20) pull each particle
towards Pbest and gbest positions. Thus, adjustment of these
constants changes the amount of tension in the system. Low
values allow particles to roam far from target regions, while
high values result in abrupt movement toward target regions.
Figure 3 shows the search mechanism of particle swarm
optimization technique using the modified velocity, best
position of particle i and best position of the group.

A

-‘_;‘Hl

Gbhest”

PZ}esfl,"‘

Fig.3. Updating the position mechanism of PSO technique

B. Constriction Factor Approach

After the original particle swarm proposed by Kennedy and
Eberhart, a lot of improved particle swarms were introduced.
The particle swarm with constriction factor is very typical.
Recent work done by Clerc [32] indicates that the use of a
constriction factor may be necessary to insure convergence of
the particle swarm optimization algorithm. In order to insure
convergence of the particle swarm optimization algorithm, the
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velocity of the constriction factor approach can be represented
as follows:

ViF =K x [oxVif +c1xrix(Pbesti -Xik )+caxrax(gbest*-Xi¥)]  (24)
Where K is the constriction factor and given by:
K= 2 (25)

‘2-(p-x/<p2 - 4(/)-

Where: p=ci1+c2, ¢ > 4

The convergence characteristic of the particle swarm
optimization technique can be controlled by ¢. In the

constriction factor approach, ¢p must be greater than 4.0 to

guarantee the stability of the PSO algorithm. However,
as ¢ increases the constriction factor decreases and

diversification is reduced, yielding slower response. Typically,
when the constriction factor is used, ¢ is set to 4.1 (i.e. c1 =c2

= 2.05) and the constant multiplier k is 0.729. The constriction
factor approach can generate higher quality solutions than the
basic PSO technique.

VIII. ALGORITHM FOR SHORT TERM HYDROTHERMAL

SCHEDULING PROBLEM USING CFPSO TECHNIQUE

The sequential steps of solving short term hydro thermal
scheduling problem by using genetic algorithm are explained as
follows:

Step 1: Read the system input data, namely fuel cost curve
coefficients, power generation limits of hydro and thermal units,
number of thermal units, number of hydro units, power
demands, water discharge rate coefficients, amount of water
available in hydro reservoir, transmission loss coefficients
matrix, water discharge rate limits.

Step 2: Select the parameters of PSO such as population size
(Np), acceleration constants (c;and c,), initial and final value of
inertia weight factor ( @min and max ).

Step 3: Initialize a population of particles with random
positions according to the minimum and maximum operating
limits of each unit (upper and lower bounds of power output of
thermal generating units and upper and lower bounds of water
discharge rate of hydro units). These initial particles must be
feasible candidate solutions that satisfy the practical operation
constraints of all thermal and hydro units.

Step 4: Initialize the velocity of particles in the range

between [-Vi™®  +ViM¥X]

Step 5: Calculate the power generation of each hydro unit.

Step 6: Calculate the thermal demand by subtracting the
generation of hydro units from the total load demand. The
thermal demand (total load — hydro generation) must be
covered by the thermal units. The thermal generations are
calculated from the power balance equation given in (4).

Step 7: Check the inequality constraint of thermal power
generated using equation (19).

Step 8: Evaluate the fitness value of each particle in the
population using the objective function given in equation (1).

Step 9: If the evaluation value of each particle is better than
the previous Pbest, then set Pbest equal to the current value.

Step 10: Select the particle with the best fitness value of all
the particles in the population as the gbest.

Step 11: Update the velocity of each particle according to
equation (24).

Step 12: Check the velocity of each particle according to the
following equation:

Vik? if Vi™ Vit <y M
Vik+l — Vimin if Vik+1 Svimin (26)
Vi™ §f Vik?t >Vvi™

Step 12: The position of each particle is modified according
to equation (22).

Step 13: Check the inequality constraints of the modified
position.

Step 14: If the stopping criterion is reached (i.e. usually
maximum number of iterations) go to step 15, otherwise go to
step 5.

Step 15: The particle that generates the latest gbest is the
optimal generation power of each unit with minimum total fuel
cost of the thermal power plants.

Step 16: Print the outputs of hydrothermal scheduling and
stop.

IX. CASE STUDY AND SIMULATION RESULTS

To verify the feasibility and effectiveness of the proposed
algorithms, a hydrothermal power system consists of one hydro
power plant and three thermal generating units were tested..
The data of test system are taken from [2]. The fuel cost data
and the minimum and maximum limits of the thermal
generating units are given in table I. In this case study, the
water discharge rate is represented according to Glimn
Kirchmayer model. The water discharge rate coefficients and
the lower and upper limits of hydro power plant are given in
table Il. The scheduling time period is one day with 24
intervals of one hour each. The load demand for 24 hours is
given in table I1l. The B-matrix of the transmission line loss
coefficients is given in equation (27). The proposed algorithms
has been implemented in MATLAB language and executed on
an Intel Core i3, 2.27 GHz personal computer with a 3.0 GB of
RAM. The optimal control parameters used in genetic
algorithm are listed in table IV. The CFPSO control parameters
selected for the solution are given in table V. The program is
run 50 times for each algorithm and the best among the 50 runs
are taken as the final solutions. The resultant optimal power
schedule of thermal and hydro power plants that meets the
required load demand and the total transmission line losses
obtained from the CFPSO algorithm is shown in table VI while
table VII shows the hourly fuel cost of each thermal unit, total
fuel cost of the system and the water discharge rate of hydro
power plant obtained from CFPSO technique. Table VIII
presents the optimal hydrothermal generation schedule along
with demand for 24 hour including the transmission line losses
obtained from the genetic algorithm and table IX gives the
hourly fuel cost of each thermal unit, total fuel cost of the
system and water discharge rate of hydro power plant obtained
from the genetic algorithm. Table X shows the comparison of
total fuel cost and computation time between the two proposed
methods. From table X, it is observed that the constriction
factor based PSO algorithm give the same solution as obtained
by genetic algorithm. Figure 4 shows the optimal power
generation schedule of hydrothermal test system using CFPSO
algorithm. The hourly hydro plant discharge trajectory by using
CFPSO method is given in figure 5. Figure 6 gives the optimal
power generation schedule during day hours by using genetic
algorithm and figure 7 shows the hourly hydro plant discharge
trajectory by using genetic algorithm.
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TABLE I: FUEL COST DATA OF THERMAL GENERATING POWER PLANTS

a; b; Ci Pgi™" | Pgim
Plant
/MW?hr) | (MWhR) | ($hr) | (Mw) | (Mw)
1 0.01 0.1 100 50 200
0.02 0.1 120 40 170
3 0.01 0.2 150 30 215

TABLE Il: DISCHARGE RATE COEFFICIENTS AND POWER LIMITS OF HYDRO UNIT

Water Phjmin Phjmax
Plant | x; Yj z volume
(m°) (MW) | (MW)
1 0.01 0.10 100 25000 50 200
TABLE I11: LOAD DEMAND FOR 24 HOUR
Po Po Po Po
Hour Hour Hour Hour
(MW) (MW) (MW) (MwW)
1 175 7 390 13 565 19 375
2 190 8 410 14 540 20 340
3 220 9 440 15 500 21 300
4 280 10 475 16 450 22 250
5 320 11 525 17 425 23 200
6 360 12 550 18 400 24 180

TABLE IV: CONTROL PARAMETERS OF GENETIC ALGORITHM
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TABLE VI: HOURLY HYDROTHERMAL GENERATION SCHEDULE AND POWER
LOSS OBTAINED FROM CFPSO TECHNIQUE

Thermal generation Hydrg
Hour generation | Loss
Pgl PgZ Pg3 Phl (MW)
MW) | MW) | (MW) (MW)

1 68.1356 40.0000 64.0655 10.0000 7.2007
2 77.1462 41.6310 70.0654 10.0000 8.8426
3 88.9214 50.2145 83.0333 10.0000 12.1691
4 114.2141 67.3381 109.2003 10.0000 20.7527
5 131.7539 | 78.4389 127.8284 10.0741 28.0956
6 146.5142 | 88.5791 141.4943 17.8482 34.4359
7 154.6471 94.8724 148.4014 299173 37.8385
8 160.5308 | 98.7054 153.0133 38.0547 40.3041
9 165.1055 | 106.2091 | 162.3226 50.2454 43.8825
10 175.8352 | 113.1778 | 169.6516 64.9265 48.5912
11 188.4399 | 123.3503 | 183.0102 86.1154 55.9155
12 194.9369 | 129.0775 | 189.3461 96.4565 59.8173
13 200.0000 | 134.1211 | 193.8283 100.000 62.9491
14 191.6835 | 127.1509 | 186.4970 92.6519 57.9831
15 182.4302 | 118.2798 | 176.3102 75.2374 52.2576
16 167.5452 | 108.4111 | 164.5151 54.6059 45.0773
17 162.1553 | 102.7916 | 158.2515 43.8912 42.0896
18 157.9871 96.6312 150.7118 33.8157 39.1457
19 149.6308 | 92.4476 1449175 23.9481 35.9440
20 141.1155 | 85.3907 135.2588 10.2154 31.9807
21 123.4245 | 72.6379 118.2341 10.0000 24.2965
22 101.6896 | 57.8784 96.6686 10.0000 16.2363
23 80.5810 44.9917 74.2655 10.0000 9.8386
24 71.7041 40.0000 66.0655 10.0000 7.7696

Genetic algorithm parameters Value
TABLE VII: HOURLY FUEL COST OF EACH THERMAL UNIT, TOTAL FUEL COST
- - AND WATER DISCHARGE RATE OF HYDRO PLANT OBTAINED FROM CFPSO
Population size 50 METHOD
Maximum number of generations 300
Crossover probability 0.8 Hour $'/:& $'/:§ $'/:r? $'/:; %'/1;1
- — r r r r m r
Mutation probability 0.05 (8ihr) ($/hr) (&/hr) () ( )
1 153.2382 | 156.0000 | 203.8570 | 513.0952 | 346.0000
2 167.2299 | 158.8259 | 213.1048 | 539.1608 | 346.0000
TABLE V: CONTROL PARAMETERS OF PARTICLE SWARM OPTIMIZATION 3 187.9623 175.4514 235.5519 598.9655 346.0000
4 2418700 | 217.4222 | 291.0872 | 750.3794 | 346.0000
CFPSO technique parameters Value 5 286.7662 | 250.8972 | 338.9666 | 876.6301 | 347.5712
6 3293155 | 285.7832 | 378.5053 | 993.6038 | 516.0775
Population size 50 7 3546219 | 309.5029 | 399.9101 | 1064.035 | 792.0487
_ _ 8 373.7544 | 324.7256 | 414.7333 | 1113.214 | 987.9836
Maximum number of generations 300
: - 9 389.1088 | 356.2285 | 445.9508 | 1191.287 | 1296.384
Acceleration coefficients(C./C2) 2.05 10 4267638 | 3875019 | 471.7471 | 1286.013 | 1691457
Minimum inertia weight (@min) 0.4 11 473.9399 | 436.6409 | 521.5294 | 1432.110 | 2307.260
Minimum inertia weight (Omer) 09 12 499.4977 | 466.1279 | 546.3887 | 1512.014 | 2627.361
Constriction factor 5779 13 520.0000 | 493.1817 | 564.4598 | 1577.641 | 2740.000
14 486.5941 | 456.0622 | 535.1106 | 1477.767 | 2508.101
15 451.0509 | 411.6302 | 496.1148 | 1358.796 | 1984.388
-~ ~ 16 397.4685 | 365.9007 | 453.5553 | 1216.924 | 1411.026
050 005 020 0.03 17 379.1589 | 341.6012 | 432.0856 | 1152.846 | 1133.410
18 3653979 | 316.4148 | 407.2829 | 1089.096 | 884.9241
. 3 005 004 018 011 4 19 338.8569 | 300.1758 | 388.9942 | 1028.027 | 653.3727
Bij =10 x MW 20 313.2474 | 2743705 | 360.0013 | 947.6193 | 350.5693
020 018 050 -0.12 @7) 21 264.6784 | 2327892 | 313.4398 | 810.9074 | 346.0000
22 213.5766 | 192.7861 | 262.7819 | 669.1446 | 346.0000
1003 011 012 023 23 | 1729911 | 1649841 | 220.0067 | 557.9820 | 346.0000
24 158.5851 | 156.0000 | 206.8596 | 521.4447 | 346.0000
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TABLE VIII: HOURLY HYDROTHERMAL GENERATION SCHEDULE AND POWER

LOSS OBTAINED FROM GENETIC ALGORITHM
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TABLE X: COMPARISON OF TOTAL FUEL COST AND COMPUTATION TIME

BETWEEN GA AND CFPSO TECHNIQUES

Thermal generation Hydrg
Hour generation | Loss
Pgl sz Pg3 Phl (MW)
MW) | (MW) | (MW) (MW)

1 68.9424 40.0000 63.2542 10.0000 7.1966
2 77.7136 41.6691 69.4542 10.0000 8.8371
3 90.2901 49.8742 82.0324 10.0000 12.1967
4 116.1462 | 66.2480 | 108.4961 10.0000 20.8903
5 133.3731 | 78.1412 | 126.5703 10.0451 28.1294
6 148.6410 | 88.3040 | 139.7042 17.8171 34.4660
7 156.6274 | 94.2452 | 147.1962 29.8885 37.9577
8 162.0485 | 98.5113 | 152.1114 37.7646 40.4357
9 167.9657 | 105.3961 | 160.7127 50.0459 44,1204
10 177.3897 | 112.5981 | 168.7198 64.9960 48.7035
11 189.9430 | 122.8326 | 182.3191 86.0092 56.1041
12 196.3250 | 128.3683 | 188.5426 96.6920 59.9279
13 200.0000 | 134.0858 | 193.8870 99.9916 62.9640
14 192.4916 | 126.6513 | 186.0227 92.8697 58.0354
15 183.7948 | 117.6525 | 175.3296 75.5273 52.3044
16 170.6785 | 107.4372 | 162.4406 54.6934 45.2504
17 163.7986 | 102.2441 | 157.3157 43.8523 42.2109
18 159.3076 | 96.4384 | 149.6248 33.8046 39.1756
19 153.0155 | 91.2666 | 143.1632 23.7604 36.2052
20 143.6989 | 84.4822 | 133.9327 10.0511 32.1649
21 125.3484 | 72.0078 | 117.0156 10.0000 24.3719
22 102.5453 | 58.2131 95.4262 10.0000 16.1848
23 81.9909 43.8815 74.0655 10.0000 9.9379
24 72.0141 40.0000 65.7542 10.0000 7.7682

TABLE IX: HOURLY FUEL COST OF EACH THERMAL UNIT, TOTAL FUEL COST
AND WATER DISCHARGE RATE OF HYDRO PLANT OBTAINED FROM GENETIC

ALGORITHM
Hour F1 F2 F3 Ft q3m
($/hr) ($/hr) ($/hr) ($/hr) (m®hr)
1 154.4248 156.0000 | 202.6618 | 513.0866 | 346.0000
2 168.1654 158.8932 | 212.1297 | 539.1884 | 346.0000
3 190.5520 174.7361 | 233.6997 | 598.9878 | 346.0000
4 246.5140 214.4009 | 289.4132 | 750.3281 346.000
5 291.2211 2499352 | 335.5144 | 876.6707 | 346.9562
6 335.8056 284.7822 | 373.1136 | 993.7014 | 515.3889
7 360.9842 307.0677 | 396.1066 | 1064.158 | 791.3693
8 378.8019 323.9406 | 411.8010 | 1114.544 | 980.8619
9 398.9214 352.7062 | 440.4282 | 1192.056 | 1291.194
10 432.4101 384.8266 | 468.4077 | 1285.644 | 1693.388
11 479.7777 434.0401 | 518.8665 | 1432.684 | 2304.039
12 505.0676 462.4052 | 543.1918 | 1510.664 | 2634.801
13 520.0000 4929885 | 564.6989 | 1577.688 | 2739.731
14 489.7793 453.4759 | 533.2488 | 1476.504 | 2514.881
15 456.1848 408.6074 | 492.4707 | 1357.263 | 1992.808
16 408.3793 361.5985 | 446.3577 | 1216.336 | 1413.350
17 384.6798 339.3016 | 428.9456 | 1152.927 | 1132.427
18 369.7198 315.6511 | 403.8008 | 1089.172 | 884.6571
19 349.4389 295.7186 | 383.5896 | 1028.747 | 649.0814
20 320.8636 271.1930 | 356.1661 | 948.2227 | 347.0835
21 269.6571 230.9032 | 310.3296 | 810.8899 | 346.0000
22 215.4099 193.5966 | 260.1468 | 669.1534 | 346.0000
23 175.4242 162.8999 | 219.6701 | 557.9942 | 346.0000
24 159.0616 156.0000 | 206.3870 | 521.4487 | 346.0000

Method Total fuel cost ($) CPU Time (Sec)
CFPSO 24278.7028 10.23
GA 24278.0589 18.14
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Fig.4. Optimal power generation schedule using CFPSO technique
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Fig.5. Hydro plant discharge trajectory using CFPSO technique
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Fig.6. Optimal power generation schedule using GA method
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Fig.7. Hydro plant discharge trajectory using GA method

X. CONCLUSIONS

In this paper, particle swarm optimization technique with
constriction factor (CFPSO) and genetic algorithm (GA) are
proposed for solving short term fixed head hydrothermal
scheduling problem. To demonstrate the performance
efficiency of the proposed algorithms, they has been applied on
hydrothermal system consists of three thermal units and one
hydro power plant. In this paper, the transmission line losses
are taken into account. The results obtained from the CFPSO
technique are compared with the simulation results obtained
from the GA to verify the feasibility of the proposed methods.
The numerical results show that the CFPSO algorithm gives the
same results as obtained by the GA. From the tabulated results,
it is clear that the GA require more computation time than the
CFPSO technique. Thus, the CFPSO approach can converge to
the minimum fuel cost faster than the GA. From the simulation
results, it can be seen that, the CFPSO method performs better
than GA in terms of the power loss.
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